Isolation of bone marrow stromal cell-derived smooth muscle cells by a human SM22alpha promoter: in vitro differentiation of putative smooth muscle progenitor cells of bone marrow.

نویسندگان

  • Yuji Kashiwakura
  • Youichi Katoh
  • Kenji Tamayose
  • Hakuoh Konishi
  • Norihide Takaya
  • Senji Yuhara
  • Masanori Yamada
  • Koichi Sugimoto
  • Hiroyuki Daida
چکیده

BACKGROUND Bone marrow stromal cells (BMSCs) have many characteristics of mesenchymal stem cells that can differentiate into smooth muscle cells (SMCs). However, there have been few studies closely following the cell development of smooth muscle lineage among BMSCs. METHODS AND RESULTS To investigate the possible existence of a cell population committed to the SMC lineage among bone marrow adhesion cells, we tried to detect and follow the in vitro differentiation of such a cell type by using a promoter-sorting method with a human SM22alpha promoter (-480 bp)/green fluorescent protein (GFP) construct. The construct was transfected to adhesion cells that appeared 5 days after the seeding of mononuclear cells from bone marrow. GFP was first detectable 5 days after the transfection in a cell population [Ad(G) cells], which expressed PDGF-beta but neither mature (calponin) nor immature (SMemb) SMC-specific proteins at that time. However, the cells were eventually grown into individual clones that expressed SMC-specific proteins (alpha-smooth muscle actin, calponin, and SM-1), suggesting that Ad(G) cells have partly at least progenitor properties. Because early studies have reported that PDGF-beta signaling plays pivotal roles in the differentiation of mesenchymal smooth muscle progenitor cells, Ad(G) cells might be putative mesenchymal smooth muscle progenitors expressing PDGF-beta. CONCLUSIONS We demonstrated the presence of a cell population fated to become SMCs and followed their differentiation into SMCs among BMSCs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilineage Differentiation Activity by the Human Umbilical Vein-Derived Mesenchymal Stem Cells

Background: Mesenchymal stem cells (MSC) are a very promising transplantable stem cell source for a variety of cell replacement therapies. As the main source of MSC is bone marrow (BM), most of studies have been done on BM-derived MSC (BM-MSC). Umbilical cord (UC)-derived MSC (UC-MSC) which are recently introduced, is one of the good alternative source for these cells. The objective of this stu...

متن کامل

Matrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells

Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...

متن کامل

CFU-GM Like Colonies Derived from Embryonic Stem Cells Cultured on the Bone Marrow Stromal Cells

The aim of this study was to isolate mouse embryonic stem cells from late blastocyst stage embryos and to use them as a model system for the study of hematopoietic induction outside the embryo by coculturing of embryonic stem cells with bone marrow stromal cells. Blastocyst stage embryos from pregnant NMRI mice were obtained and cultured for 1-2 days in DMEM medium. The inner cell masses formed...

متن کامل

Human Mesenchymal Stem Cells and Their, Clinical Aapplication

There are two main categories for stem cells a cording to their origin: Embryonic Stem Cells and Adult Stem Cell. Mesenchymal stem cell, supporting hematopoetic stem cells in bone marrow, can regenerate tissues such as bone, cartilage, muscle, tendon and fatty tissue. These cells were recognized for the first time by Friedenstein and Petrokova who could isolate theme from rat bone marrow.Mesenc...

متن کامل

Bone marrow stromal cells and their application in neural injuries

Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation

دوره 107 16  شماره 

صفحات  -

تاریخ انتشار 2003